A Comparative Analysis of Different Categorical Data Clustering Ensemble Methods in Data Mining
نویسندگان
چکیده
Over the past decades, a prevalent amount of work has been done in the data clustering research under the unsupervised learning technique in Data mining. Moreover a myriad of algorithms and methods has been proposed focusing on clustering different data types, representation of cluster models, and accuracy rates of the clusters. However no single clustering algorithm proves to be the most efficient in providing best results. Accordingly in order to find the solution to this issue a new technique, called Cluster ensemble method was bloomed. This cluster ensemble is a good alternative approach for facing the cluster analysis problem. The main aspire of the cluster ensemble is to combine different clustering solutions in such a way to achieve accuracy and to improve the quality of individual data clustering. Due to the substantial and unremitting development of the new methods in the sphere of data mining, it is obligatory to make a critical analysis of the existing techniques and the future novelty. This paper reveals the comparative study of different cluster ensemble methods along with their features, systematic working process and the average accuracy and error rates of each ensemble methods. Consequently this theoretical and comprehensive analysis will be very useful for the community of clustering practitioners and also helps in deciding the most suitable one to rectify the problem in hand.
منابع مشابه
A Review: Comparative Analysis of Different Categorical Data Clustering Ensemble Methods
Over the past epoch a rampant amount of work has been done in the data clustering research under the unsupervised learning technique in Data mining. Furthermore several algorithms and methods have been proposed focusing on clustering different data types, representation of cluster models, and accuracy rates of the clusters. However no single clustering algorithm proves to be the most efficient ...
متن کاملA Link-Based Cluster Collection Approach Combined Contagious Cluster With For Categorical Data Clustering
Data clustering is a challenging task in data mining technique. Various clustering algorithms are developed to cluster or categorize the datasets. Many algorithms are used to cluster the categorical data. Some algorithms cannot be directly applied for clustering of categorical data. Several attempts have been made to solve the problem of clustering categorical data via cluster ensembles. But th...
متن کاملA Thorough Investigation of Link-Based Cluster Ensemble Approach for Data Clustering
Clustering, in data mining, is useful to discover distribution patterns in the underlying data. Clustering algorithms usually employ a distance metric based (e.g., Euclidean) similarity measure in order to partition the database such that data points in the same partition are more similar than points in different partitions. The problem of clustering becomes more challenging when the data is ca...
متن کاملارائه یک الگوریتم خوشه بندی برای داده های دسته ای با ترکیب معیارها
Clustering is one of the main techniques in data mining. Clustering is a process that classifies data set into groups. In clustering, the data in a cluster are the closest to each other and the data in two different clusters have the most difference. Clustering algorithms are divided into two categories according to the type of data: Clustering algorithms for numerical data and clustering algor...
متن کاملA Comprehensive Review on Different Mixed Data Clustering Ensemble Methods
An extensive amount of work has been done in data clustering research under the unsupervised learning technique in Data Mining during the past two decades. Moreover, several approaches and methods have been emerged focusing on clustering diverse data types, features of cluster models and similarity rates of clusters. However, none of the single clustering algorithm exemplifies its best nature i...
متن کامل